135k views
0 votes
A data set has a mean 25 and standard deviation 5 find the z score of 39

2 Answers

2 votes
The answer to your question is 14/5
User Marilia
by
4.8k points
1 vote

Answer:


\boxed {\boxed {\sf z=2.8}}

Explanation:

The z-score helps describe a value's relationship to the mean. It tells us how many standard deviations a value is from the mean. The formula is:


z= (x- \bar x)/(s)

where x is the value, x-bar is the mean, and s is the standard deviation.

We know the data set has a mean of 25 and a standard deviation of 5. The value we are finding the z score for is 39.

  • x= 39
  • x-bar= 25
  • s=5

Substitute the values into the formula.


z= ( 39-25)/(5)

Solve the numerator.


z= ( 14)/(5)


z=2.8

The z-score for 39 is 2.8. This means a value of 39 is 2.8 standard deviations greater than the mean.

User Mohammad Taherian
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.