Answer:
![a_(n) = 5 * 3^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/college/qmt58dhq3yfojzugs6bmiznlhysqyh8ndz.png)
Explanation:
To find the nth term of a geometric sequence, you have the general formula:
![a_(1) *r^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/college/dzycepozh47csh04mn0ownfes2r6s2d6bb.png)
where a1 is the first term and r is the common ratio. In order to find the 4th term, we can substitute what we have(n is 4 because we are looking for the fourth term):
135 =
![a_(1) * 3^(4 - 1)](https://img.qammunity.org/2022/formulas/mathematics/college/isk9f1kp152g86d685uoo6goeyn0drnza9.png)
135 =
![a_(1) * 3^3](https://img.qammunity.org/2022/formulas/mathematics/college/ullzb216cnu6ykj2ktjjul8t1n6t6xslup.png)
135 =
![27a_(1)](https://img.qammunity.org/2022/formulas/mathematics/college/gpayo31nbepbkim2koom09fkf5zcvj411h.png)
![a_(1) = 5](https://img.qammunity.org/2022/formulas/mathematics/college/1sgh8md6dvqx26megca0bcl7kt1sq8kceu.png)
Now, we can substitute the first term back in:
![a_(n) = 5 * 3^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/college/qmt58dhq3yfojzugs6bmiznlhysqyh8ndz.png)