150k views
0 votes
Repost bcs last one wasnt clear BUT PLEASE HELPP 5 MINS LEFT

Repost bcs last one wasnt clear BUT PLEASE HELPP 5 MINS LEFT-example-1
User Asolanki
by
4.5k points

1 Answer

5 votes

Answer:


m =13

Explanation:

Given

The attached dataset

Required

The mean absolute deviation

First, calculate the mean


\bar x = (\sum x)/(n)

So, we have:


\bar x = (42+40+39+76+71+55+68+65)/(8)


\bar x = (456)/(8)


\bar x = 57

The mean absolute deviation (m) is:


m =(1)/(n) \sum|x - \bar x|

So, we have:


m =(1)/(8) (|42 - 57| + |40 - 57| + |39 - 57| + |76 - 57| + |71 - 57| + |55 - 57| + |68 - 57| + |65 - 57|)

Using a calculator, we have:


m =(1)/(8) (|-15| + |-17| + |-18| + |19| + |14| + |-2| + |11| + |8|)

Remove absolute bracket


m =(1)/(8) (15 + 17 + 18 + 19 + 14 + 2 + 11 + 8)


m =(1)/(8) *104


m =13

The mean absolute deviation is 13

User Aeonaut
by
3.9k points