Answer:
Option B.
Explanation:
Inverse function:
Suppose we have a function y = f(x). To find the inverse function, we exchange x and y on the original function, and then isolate y.
The domain of the inverse function(x values) is the range of the original function(y values).
Original function:
![f(x) = √(x) - 5](https://img.qammunity.org/2022/formulas/mathematics/college/tonaql1kve74vxn3sk00wv4jsy8bqym7mo.png)
Domain is
, and when
. So the range is
, that is,
![y \geq -5](https://img.qammunity.org/2022/formulas/mathematics/college/2apftvhgaka2gk959n692zp0lk8b65riow.png)
Inverse function:
![y = √(x) - 5](https://img.qammunity.org/2022/formulas/mathematics/college/sb7o2no5njc58gbxaq625u96x0nw8fquau.png)
Exchanging x and y
![x = √(y) - 5](https://img.qammunity.org/2022/formulas/mathematics/college/u3m7gmjd951o4m1c7jmc70m8oj7b3uiiui.png)
![√(y) = x + 5](https://img.qammunity.org/2022/formulas/mathematics/college/5fo6ktsjskqe0fc9jank02t13xo3g21mwn.png)
![(√(y))^2 = (x+5)^2](https://img.qammunity.org/2022/formulas/mathematics/college/5jls5wmcoajjt2k9jny00y5fwxodd2j3ek.png)
![y = (x+5)^2](https://img.qammunity.org/2022/formulas/mathematics/college/k1wchmmp3htwvmjw17ngiga8gkuh6xtqlr.png)
The inverse function is
![f^(-1)(x) = (x+5)^2](https://img.qammunity.org/2022/formulas/mathematics/college/8j8khbl7ktxv6huq7a05q1ozgt7bgfw6uq.png)
Domain:
Range of the original function is
, so the domain of the inverse function is
. The correct answer is given by option B.