113k views
4 votes
A flywheel slows from 600. to 416 rev/min while rotating through 34.0 revolutions. What is the angular acceleration of the flywheel

1 Answer

3 votes

Answer:
\alpha=4.798\ rad/s^2\quad [\text{deceleration}]

Step-by-step explanation:

Given

Initial revolution of flywheel
N_1=600\ rpm

(Initial angular velocity
\omega_i=(2\pi N_1)/(60))

Final revolution of flywheel
N_2=600\ rpm

(Final angular velocity
\omega_f=(2\pi N_1)/(60))

Revolution turned
34

So, angle turned is
\theta =2\pi * 34\\

Using equation of angular motion i.e.
\omega_f^2-\omega_i^2=2\cdot \alpha \cdot \theta


\Rightarrow \left((2\pi * 416)/(60)\right)^2-\left((2\pi * 416)/(60)\right)^2=2\alpha * (68\pi )\\\\\Rightarrow \alpha=(1898.344-3948.86)/(427.312)\\\\\Rightarrow \alpha =-4.798\ rad/s^2\\\Rightarrow \alpha =4.798\ rad/s^2\quad [\text{deceleration}]

User Bryan A
by
4.1k points