116k views
3 votes
Evaluate (if possible) the function at the given value(s) of the independent variable. Simplify the results. f(x)

User Reformy
by
7.1k points

1 Answer

1 vote

Answer:


(f(x + \triangle x) - f(x))/(\triangle x) = 3x^2+ 3x \cdot \triangle x + (\triangle x)^2

Explanation:

Given


f(x) = x^3

Required

Evaluate


(f(x + \triangle x) - f(x))/(\triangle x)


(f(x + \triangle x) - f(x))/(\triangle x) becomes


(f(x + \triangle x) - f(x))/(\triangle x) = ((x + \triangle x)^3 - x^3)/(\triangle x)

Expand


(f(x + \triangle x) - f(x))/(\triangle x) = (x^3 + 3x^2 \cdot \triangle x+ 3x \cdot (\triangle x)^2 + (\triangle x)^3 - x^3)/(\triangle x)

Collect like terms


(f(x + \triangle x) - f(x))/(\triangle x) = (x^3 - x^3+ 3x^2 \cdot \triangle x+ 3x \cdot (\triangle x)^2 + (\triangle x)^3 )/(\triangle x)


(f(x + \triangle x) - f(x))/(\triangle x) = (3x^2 \cdot \triangle x+ 3x \cdot (\triangle x)^2 + (\triangle x)^3 )/(\triangle x)

Factorize


(f(x + \triangle x) - f(x))/(\triangle x) = (\triangle x(3x^2+ 3x \cdot \triangle x + (\triangle x)^2) )/(\triangle x)


(f(x + \triangle x) - f(x))/(\triangle x) = 3x^2+ 3x \cdot \triangle x + (\triangle x)^2

User Raj Chaurasia
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories