Answer:
See explanation
Explanation:
The question is incomplete; So, I will solve the question generally.
Assume the following;
![l \to length](https://img.qammunity.org/2022/formulas/mathematics/high-school/53ik5xw3l80k0s1cndikkpa7t8vfirrzd4.png)
![w \to width](https://img.qammunity.org/2022/formulas/mathematics/high-school/3tu2c39niuszy4wsvueo2htgezbj8y2u99.png)
![h \to height](https://img.qammunity.org/2022/formulas/mathematics/high-school/uje66873c179i7mks6knyo30xuswjglbf7.png)
Since the water level must be 2 inches below the tank height, the water height is:
![H \to h - 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/zbw43llog4nn5u9rt7ar5yy170agqaozry.png)
So, the water volume is:
![Volume = l * w * H](https://img.qammunity.org/2022/formulas/mathematics/high-school/mde1jfrwjookyakyihb5b45lsr78kz133z.png)
![Volume = l * w * (h - 2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/v0i0axg6jd4l8jvit19opfmqetufr5htqh.png)
Hence, the expression is:
![Volume = l * w * (h - 2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/v0i0axg6jd4l8jvit19opfmqetufr5htqh.png)
Assume that:
![l = 5; w = 10; h = 8](https://img.qammunity.org/2022/formulas/mathematics/high-school/py1vxp61egyiqfh4yx5uw3t9ckdz8rzq1k.png)
The volume becomes:
![Volume = 5 * 10 * (8 - 2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nsqbfmbb3astyenqblv58sqjbhgh2gaqbl.png)
![Volume = 5 * 10 * 6](https://img.qammunity.org/2022/formulas/mathematics/high-school/eau4t26wep077d165nc5rj9j7gr9qso2x2.png)
cubic units