Answer:
![\displaystyle V = 32\pi \ in^3](https://img.qammunity.org/2022/formulas/mathematics/college/o9t14tb44ox3mqc6tdvcy9jtxql4mir6xw.png)
General Formulas and Concepts:
Symbols
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Geometry
Volume of a Cone Formula:
![\displaystyle V = (1)/(3) \pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/kwvkk3vzegktdzc7kcfwyyhlwgubohlowk.png)
Explanation:
Step 1: Define
Identify
r = 4 in
h = 6 in
Step 2: Find Volume
- Substitute in variables [Volume of a Cone Formula]:
![\displaystyle V = (1)/(3) \pi (4 \ in)^2(6 \ in)](https://img.qammunity.org/2022/formulas/mathematics/college/9qdp3hgek391xsi54fewj33nizr2ss2a5j.png)
- Evaluate exponents:
![\displaystyle V = (1)/(3) \pi (16 \ in^2)(6 \ in)](https://img.qammunity.org/2022/formulas/mathematics/college/e5v5tx69aqh5l4jiibccdbpqmy2uv6tiim.png)
- Multiply:
![\displaystyle V = (1)/(3) \pi (96 \ in^3)](https://img.qammunity.org/2022/formulas/mathematics/college/562qebb5rdqw6wzb57ts66taw3edamkqej.png)
- Multiply:
![\displaystyle V = 32\pi \ in^3](https://img.qammunity.org/2022/formulas/mathematics/college/o9t14tb44ox3mqc6tdvcy9jtxql4mir6xw.png)