38.2k views
13 votes
Find the total area in the picture. Round to the nearest tenths place.

Find the total area in the picture. Round to the nearest tenths place.-example-1

1 Answer

7 votes

will recommend to keep in touch with picture as name of sides are based on it!.

It may not get messy so i will divide whole answer into small parts.

Now Let's move to solution :)


\\ \\


\gray{ \bf \dag \frak{Part 1}}

In this part we will just focus on Semicircle with diameter 22 ft.

Given :-

  • Diameter = 22 ft


\\

To find:-

  • Area of semicircle


\\

So first of all let's convert diameter into radius.

we know:-


\boxed{ \rm{}radius = (Diameter)/(2) }

So:-


\\


\hookrightarrow\sf{}radius = (Diameter)/(2)


\\


\hookrightarrow\sf{}radius = (22)/(2)


\\


\hookrightarrow\sf{}radius = (2 * 11)/(2)


\\


\hookrightarrow\sf{}radius = (\cancel2 * 11)/(\cancel2)


\\


\hookrightarrow\sf{}radius = (11)/(1)


\\


\hookrightarrow\sf{}radius = 11


\\ \\

Now let's find area of semicircle!

We know:-


\boxed{ \rm Area~of~semicircle = \frac{\pi {r}^(2) }{2} }


\\

so:-


\\


\dashrightarrow\sf Area~of~semicircle _1= \frac{\pi {r}^(2) }{2}


\\ \\


\dashrightarrow\sf Area~of~semicircle _1= \frac{22 * {11}^(2) }{7 * 2} \\


\\ \\


\dashrightarrow\sf Area~of~semicircle _1= \frac{\cancel{22} * {11}^(\cancel2) }{7 * \cancel2} \\


\\ \\


\dashrightarrow\sf Area~of~semicircle _1= \frac{11* {11}^(\cancel2) }{7} \\


\\ \\


\dashrightarrow\sf Area~of~semicircle _1= (1331)/(7) \\


\\ \\


\dashrightarrow\bf Area~of~semicircle _1= 190.14 \\


\\ \\


\gray{ \bf \dag \frak{Part 2}}

So in this part we will find area of other semicircle.

Now as u can see BC isn't given , but AC and AB are given.

So let's find BC:-

  • AC = AB + BC
  • BC = AC - AB
  • BC = 30 - 22
  • BC = 8 ft


\\

Now we got the diameter, so let's change it into radius.

we know:-


\boxed{ \rm{}radius = (Diameter)/(2) }


\\

so :-


\hookrightarrow\sf{}radius = (Diameter)/(2)


\\


\hookrightarrow\sf{}radius = (8)/(2)


\\


\hookrightarrow\sf{}radius = (2 * 4)/(2)


\\


\hookrightarrow\sf{}radius = (\cancel2 * 4)/(\cancel2)


\\


\hookrightarrow\sf{}radius = 4


\\

Now let's find area of semicircle!

We know:-


\boxed{ \rm Area~of~semicircle = \frac{\pi {r}^(2) }{2} }


\\


\dashrightarrow\sf Area~of~semicircle _2= \frac{\pi {r}^(2) }{2}


\\ \\


\dashrightarrow\sf Area~of~semicircle _2= \frac{22 * {4}^(2) }{7 * 2} \\


\\ \\


\dashrightarrow\sf Area~of~semicircle _2= \frac{\cancel{22} * {4}^(\cancel2) }{7 * \cancel2} \\


\\ \\


\dashrightarrow\sf Area~of~semicircle _2= \frac{11* {4}^(2) }{7} \\


\\ \\


\dashrightarrow\sf Area~of~semicircle _2= (11* 16)/(7) \\


\\ \\


\dashrightarrow\sf Area~of~semicircle _2= (176)/(7) \\


\\ \\


\dashrightarrow\bf Area~of~semicircle _2= 25.14 \\


\\ \\


\gray{ \bf \dag \frak{Part 3}}

Now Finally in this part we'll add both the areas of these semicircles.

Let :-

  • Area of semicircle with diameter AB be A₁
  • Area of semicircle with diameter BC be A₂


\\ \\


\sf: \implies Area~of~figure=A_1+A_2 \\


\\ \\


\sf: \implies Area~of~figure=190.14+25.14 \\


\\ \\


\bf: \implies Area~of~figure=215.28 {ft}^(2) \\


\\ \\

Find the total area in the picture. Round to the nearest tenths place.-example-1
User Hui Liu
by
4.3k points