2.6k views
4 votes
PLEASE HELP!!! CALCULUS ASSIGNMENT

PLEASE HELP!!! CALCULUS ASSIGNMENT-example-1
User Doody P
by
3.8k points

2 Answers

3 votes

Answer:

( d ) 12x³ - 15x² + 2

Explanation:

y = 3x⁴ - 5x³ + 2x - 1

  • The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of axⁿ is nax^{n-1}.


\small \sf \: y = 4* 3x^(4-1)+3\left(-5\right)x^(3-1)+2x^(1-1)

  • multiply 4 × 3.


\small \sf \: y = 12x^(4-1)+3\left(-5\right)x^(3-1)+2x^(1-1)

  • Multiply 3 × -5


\small \sf \: y = 12x^(3)-15x^(3-1)+2x^(1-1)

  • subtract the exponents

y = 12x³ - 15x² + 2⁰

  • For any term t except 0, t⁰ = 1.

y = 12x³ - 15x² + 2 × 1

y = 12x³ - 15x² + 2

Hence, option ( d ) is the correct answer.

User Cbrdy
by
4.5k points
5 votes

Answer:

(d)
\displaystyle 12x^3 - 15x^2 + 2

General Formulas and Concepts:

Algebra I

  • Functions
  • Function Notation

Calculus

Derivatives

Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Explanation:

Step 1: Define

Identify


\displaystyle y = 3x^4 - 5x^3 + 2x - 1

Step 2: Differentiate

  1. Basic Power Rule:
    \displaystyle y' = 4(3x^(4 - 1)) - 3(5x^(3 - 1)) + 2x^(1 - 1) - 0
  2. Simplify:
    \displaystyle y' = 4(3x^3) - 3(5x^2) + 2
  3. Multiply:
    \displaystyle y' = 12x^3 - 15x^2 + 2

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Lokoko
by
4.8k points