Given:
A prism with height 5 cm and equilateral triangular base with side 2 cm.
To find:
The total surface area of the prism.
Solution:
Area of an equilateral triangle is:
![A_1=(√(3))/(4)a^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/3ro48oga0ryl2qboljtt2piakiwi07g94l.png)
Where, a is the side length.
Putting
, we get
![A_1=(√(3))/(4)(2)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/z2oxecdpywh9hg23acwcdc81hs72n24sqn.png)
![A_1=(√(3))/(4)(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/voeg3u4boedncnba80z4l29u55ghnrlpyk.png)
![A_1=√(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zjbfoe877k5n7jk55xenztx0y3318xt49m.png)
![A_1\approx √(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/stx4kmja18npsxwa23xfonmzh6yho6s20f.png)
The base and top of the prism are congruent so their area must be equal.
The lateral surface area of the prism is:
![LA=Ph](https://img.qammunity.org/2022/formulas/mathematics/high-school/ggyl9i5wcyxy4r2gld7b33jd911wz8fubb.png)
Where, P is the perimeter of the base and h is the height of the prism.
The lateral surface area of the prism is:
![A_2=(2+2+2)5](https://img.qammunity.org/2022/formulas/mathematics/high-school/av6r81twdq38u7zb371wfhakiwst1nulbw.png)
![A_2=(6)5](https://img.qammunity.org/2022/formulas/mathematics/high-school/c6dcilq0vmymetoxcqvs9n8xsruhv5k43k.png)
![A_2=30](https://img.qammunity.org/2022/formulas/mathematics/high-school/32sdm5mm2r7qldz87gadt3u3aqn0jq7jt2.png)
Now, the total surface area is the sum of areas of bases and lateral surface area.
![A=2A_1+A_2](https://img.qammunity.org/2022/formulas/mathematics/high-school/plvv0ialpqexczocrue0z58ihxhlhg0ek0.png)
![A=2(1.73)+30](https://img.qammunity.org/2022/formulas/mathematics/high-school/8g43kb943rhg17309ulbdgln1qa74aaelr.png)
![A=3.46+30](https://img.qammunity.org/2022/formulas/mathematics/high-school/aqc53ykjxztfouw78dxyafcrsfq5qbwd3k.png)
![A=33.46](https://img.qammunity.org/2022/formulas/mathematics/high-school/6rjo559fdb8eopn7q50uv8vkf7qqc8asp5.png)
Therefore, the total surface area is 33.46 cm².