12.7k views
5 votes
Solve

\sf (1)/(p) + (1)/(q) + (1)/(x) = (1)/(p + q + x)


User Wilblack
by
5.1k points

1 Answer

2 votes

Answer:


\displaystyle \begin{cases} \displaystyle {x} _(1) = - p \\ \displaystyle x _(2) = - q \end{cases}

Explanation:

we would like to solve the following equation for x:


\displaystyle (1)/(p) + (1)/(q) + (1)/(x) = (1)/(p + q + x)

to do so isolate
(1)/(x) to right hand side and change its sign which yields:


\displaystyle (1)/(p) + (1)/(q) = (1)/(p + q + x) - (1)/(x)

simplify Substraction:


\displaystyle (1)/(p) + (1)/(q) = (x - (q + p + x))/(x(p + q + x))

get rid of only x:


\displaystyle (1)/(p) + (1)/(q) = ( - (q + p ))/(x(p + q + x))

simplify addition of the left hand side:


\displaystyle (q + p)/(pq) = ( - (q + p ))/(x(p + q + x))

divide both sides by q+p Which yields:


\displaystyle (1)/(pq) = ( -1)/(x(p + q + x))

cross multiplication:


\displaystyle x(p + q + x) = - pq

distribute:


\displaystyle xp + xq + {x}^(2) = - pq

isolate -pq to the left hand side and change its sign:


\displaystyle xp + xq + {x}^(2) + pq = 0

rearrange it to standard form:


\displaystyle {x}^(2) + xp + xq + pq = 0

now notice we end up with a quadratic equation therefore to solve so we can consider factoring method to use so

factor out x:


\displaystyle x( {x}^{} + p ) + xq + pq = 0

factor out q:


\displaystyle x( {x}^{} + p ) +q (x + p)= 0

group:


\displaystyle ( {x}^{} + p ) (x + q)= 0

by Zero product property we obtain:


\displaystyle \begin{cases} \displaystyle {x}^{} + p = 0 \\ \displaystyle x + q= 0 \end{cases}

cancel out p from the first equation and q from the second equation which yields:


\displaystyle \begin{cases} \displaystyle {x}^{} = - p \\ \displaystyle x = - q \end{cases}

and we are done!

User Matt Curtis
by
4.1k points