Solution :
The conditions for the maximum in the Young's experiment is :
d sin θ = m λ, where m = 0, 1, 2, 3, .....
The angle between the central maximum and the 1st order maximum can be determined by setting the m = 1. So,
d sin θ = λ
![$\theta = \sin^(-1)\left((\lambda)/(d)\right)$](https://img.qammunity.org/2022/formulas/physics/college/vrx3v9etk8cxtwf0ws46vf0mx6l6328020.png)
Given : d = 100 λ
![$\theta = \sin^(-1)\left((\lambda)/(100 \lambda)\right)$](https://img.qammunity.org/2022/formulas/physics/college/glqbjoa2vrniej5ylhjbd9wcl4dxomlo96.png)
![$\theta = \sin^(-1)\left((1)/(100)\right)$](https://img.qammunity.org/2022/formulas/physics/college/v0n9ketu2o7gdzxfpydjm8c0ahzdxwatcx.png)
![$=0.573^\circ$](https://img.qammunity.org/2022/formulas/physics/college/94vxhek5hg6ijod715jr7836un0qtgmqub.png)
= 0.01 rad