153k views
3 votes
Find the integration of (1-cos2x)/(1+cos2x)

1 Answer

4 votes

Given:

The expression is:


(1-\cos 2x)/(1+\cos 2x)

To find:

The integration of the given expression.

Solution:

We need to find the integration of
(1-\cos 2x)/(1+\cos 2x).

Let us consider,


I=\int (1-\cos 2x)/(1+\cos 2x)dx


I=\int (2\sin^2x)/(2\cos^2x)dx
[\because 1+\cos 2x=2\cos^2x,1-\cos 2x=2\sin^2x]


I=\int (\sin^2x)/(\cos^2x)dx


I=\int \tan^2xdx
\left[\because \tan \theta =(\sin \theta)/(\cos \theta)\right]

It can be written as:


I=\int (\sec^2x-1)dx
[\because 1+\tan^2 \theta =\sec^2 \theta]


I=\int \sec^2xdx-\int 1dx


I=\tan x-x+C

Therefore, the integration of
(1-\cos 2x)/(1+\cos 2x) is
I=\tan x-x+C.

User Gilad Novik
by
4.3k points