Given:
The figure of a rhombus QRST.
To find:
A. The value of x.
B. The measure of angle RQP.
Solution:
A. We need to find the value of x.
We know that the diagonals of a rhombus are perpendicular bisectors. It means the angles on the intersection of diagonals are right angles.
[Right angle]
Divide both sides by 5.
Therefore, the value of x is 15.
B. We need to find the measure of angle RQP.
From the given figure, it is clear that

Putting
, we get



Therefore, the measure of angle RQP is 33 degrees.