Answer:
PV = $733,271
Step-by-step explanation:
From the given information:
The annual payment (P) = $50,000
number of years (n) = 20
The growth percentage = 2% = 0.02
Rate of percentage earned = 5% = 0.05
Using the formula illustrated below to determine the Present Value (PV) of a growing annuity;
![PV = (P)/(r-g)\Big ( 1 - \Big ( (1+g)/(1+r) \Big) ^n \Big)](https://img.qammunity.org/2022/formulas/business/college/edhukiq82eerxddy0rzjgiion3sshn8po1.png)
![PV = (50000)/(0.05-0.02)\Big ( 1 - \Big ( (1+0.02)/(1+0.05) \Big) ^(20) \Big)](https://img.qammunity.org/2022/formulas/business/college/obc81hvivnyj6y5xtik3pxhg3lwvfb3cn3.png)
![PV = (50000)/(0.03)\Big ( 1 - \Big ( (1.02)/(1.05) \Big) ^(20) \Big)](https://img.qammunity.org/2022/formulas/business/college/jsgukgihq3qcpkqgephib7bnib9fkt6nqe.png)
![PV =1666666.667 \Big ( 1 - \Big ( 0.9714285714 \Big) ^(20) \Big)](https://img.qammunity.org/2022/formulas/business/college/sglykyhbztakp27w8ko5rjwfug072d0cjx.png)
![PV =1666666.667 \Big ( 1 -0.5600379453 \Big)](https://img.qammunity.org/2022/formulas/business/college/xkrzpcy205toyavrm2523cov0m1ae5sebq.png)
![PV =1666666.667 \Big (0.4399620547 \Big)](https://img.qammunity.org/2022/formulas/business/college/8r0uxr3vzmmmb8tlj09tc5vor96aejttms.png)
![PV =\$733270.0913 \\ \\ \mathbf{PV \simeq \$733,271}](https://img.qammunity.org/2022/formulas/business/college/c5ep8s6ruuymibkj27npdcytflzja3zqi6.png)