Answer:
B.
![22^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bbgst9kqwg6mhdutepbwci7jl2kbhf46kd.png)
Explanation:
We are given that HMS is an isosceles triangle.
Angle M is the vertex angle.
![m\angle M=(2x+6)^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/83k9xzaodo9xq754ks5pchrwjfei553ct7.png)
![m\angle H=(9x+7)^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/f4o67tc4wukqfrkj37d4bs9123ncr0qc0q.png)
![\angle H=\angle S](https://img.qammunity.org/2022/formulas/mathematics/college/274wuat3d9bw7d2xxeggayy2jtta2x169u.png)
By definition of isosceles triangle
We have to find the measure of angle M.
![\angle M+\angle H+\angle S=180^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/etu7qb8qff82grp3t35e3w67scqo2n27im.png)
By using sum of angles of triangle property
Substitute the values
![2x+6+9x+7+9x+7=180](https://img.qammunity.org/2022/formulas/mathematics/college/ql980zvsbtyy714yld2tzsvwotttxdxdcb.png)
![20x+20=180](https://img.qammunity.org/2022/formulas/mathematics/college/k4te0z3fj1b91iwxavoqn3m39m2u28s3u7.png)
![20x=180-20](https://img.qammunity.org/2022/formulas/mathematics/college/c7rox1bsu205oz3xzpbi0kbc49ddojvjg6.png)
![20x=160](https://img.qammunity.org/2022/formulas/mathematics/college/1398th3vkcwgapu8jf4vfkide8xf02vv0w.png)
![x=(160)/(20)=8](https://img.qammunity.org/2022/formulas/mathematics/college/83qmyfps20qqbehnk379a9l4w0echn6i36.png)
Using the value of x
![m\angle M=2(8)+6](https://img.qammunity.org/2022/formulas/mathematics/college/323le5t8uel6vk2ngl44iibnd20evvqd4w.png)
![m\angle M=22^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/oef6g2xuzzx6oke9adozc24fft8g68cpp7.png)
Hence, option B is correct.