Answer:
![(a)\ P(x \ge 215)](https://img.qammunity.org/2022/formulas/mathematics/college/1nss7mgomla4gqmt1jg7dqow62ac5r760t.png)
![(b)\ P(x \ge 214.5) = 0.07353](https://img.qammunity.org/2022/formulas/mathematics/college/w85e8xugipz3769vcpefrma684sx0kl68h.png)
Explanation:
Given
---- proportion of watches with defects
--- Number of watches
Solving (a): Represent at least 215 of 400 are defective
In inequalities, at least means:
![\ge](https://img.qammunity.org/2022/formulas/mathematics/college/e6aox7mqn1lsdzq7k46nqcwtlb84yalo8z.png)
So, the probability is represented as:
![P(x \ge 215)](https://img.qammunity.org/2022/formulas/mathematics/college/6yhkljojtiin8ibf6z59melyjcetqknd17.png)
Solving (b): Calculate
![P(x \ge 215)](https://img.qammunity.org/2022/formulas/mathematics/college/6yhkljojtiin8ibf6z59melyjcetqknd17.png)
Normal or Poisson: Normal distribution is characterized by 2 parameters
and
.
These two parameters can be easily calculated from the given parameters in the question. So, we solve using normal distribution
Start by calculating the mean
![\mu =np](https://img.qammunity.org/2022/formulas/mathematics/college/sk4tu4lbcb8hnna6oxlwyd5rwi5pdje5lg.png)
![\mu = 0.50 * 400](https://img.qammunity.org/2022/formulas/mathematics/college/fynrejct6teuvtsafgu0h6zopp464cwzv5.png)
![\mu = 200](https://img.qammunity.org/2022/formulas/mathematics/college/o3pyg1qwd1flqpqwb8z7goxpgeeaytoufq.png)
Calculate standard deviation
![\sigma = \sqrt{\mu (1 - p)](https://img.qammunity.org/2022/formulas/mathematics/college/1p0yxyi6vsocj35de5kufzeg04cbanfvun.png)
![\sigma = \sqrt{200 * (1 - 0.50)](https://img.qammunity.org/2022/formulas/mathematics/college/3rfnb8ov678o4df1aoe8ig58zda3a1og4r.png)
![\sigma = \sqrt{200 * 0.50](https://img.qammunity.org/2022/formulas/mathematics/college/j0vypoyn7l76sniqvouft05ljpr2wlcdfj.png)
![\sigma = \sqrt{100](https://img.qammunity.org/2022/formulas/mathematics/college/u4a00z6md35lwui567o8c945kav9o8trh9.png)
![\sigma = 10](https://img.qammunity.org/2022/formulas/sat/college/ep90c68pkoz7zrq51c9l504f7rp83e7v2i.png)
By continuity correction, we have:
![x \to x - 0.5](https://img.qammunity.org/2022/formulas/mathematics/college/lzvddnxh2vgnd9cvxwaovjakziqql8n4l8.png)
![x \to 215 - 0.5](https://img.qammunity.org/2022/formulas/mathematics/college/zulygc91nulp3s3k14a39htvdkfoxl1bxv.png)
![x \to 214.5](https://img.qammunity.org/2022/formulas/mathematics/college/nq1fmmr9chq1uz9r1xxcc6nmnc05moddz0.png)
So, we have:
![P(x \ge 215) = P(x \ge 214.5)](https://img.qammunity.org/2022/formulas/mathematics/college/14y6y70vwshl1c8bh6knwpfapckb8918ti.png)
Calculating
, we have:
![P(x \ge 214.5) = 1 - P(x < z)](https://img.qammunity.org/2022/formulas/mathematics/college/wosbdisag13pii66x11icrlmrwf9z2f7mi.png)
Calculate z score
![z = (x - \mu)/(\sigma)](https://img.qammunity.org/2022/formulas/sat/college/6dc0skgic8a8ukwbc2u6ssqgp7mahvdcab.png)
![z = (214.5 - 200)/(10)](https://img.qammunity.org/2022/formulas/mathematics/college/6c0zvou4e3zgxmsgdcn4wi76fiu1dc0fgb.png)
![z = (14.5)/(10)](https://img.qammunity.org/2022/formulas/mathematics/college/thccpomqd91qgcz1mlhnggwrkslpvl92e8.png)
![z = 1.45](https://img.qammunity.org/2022/formulas/mathematics/college/z8qiijqwkvlfjulu9zular6pyh1oani5a2.png)
So, we have:
![P(x \ge 214.5) = 1 - P(x < 1.45)](https://img.qammunity.org/2022/formulas/mathematics/college/mluvtptfey0cycekd1o13b04t8sjyswo9b.png)
Using the z score probability table, we have:
![P(x < 1.45) = 0.92647](https://img.qammunity.org/2022/formulas/mathematics/college/ewa4qem4ubg9kg6h1tlc3l6hecyequdewj.png)
So, we have:
![P(x \ge 214.5) = 1 - 0.92647](https://img.qammunity.org/2022/formulas/mathematics/college/jkvakvfr8agob098tpkecs91yrtf22zfvt.png)
![P(x \ge 214.5) = 0.07353](https://img.qammunity.org/2022/formulas/mathematics/college/l460kzlw1b5x8zndple9uqtei80r91bqyc.png)