Answer:
1. Cosθ / SineθCosθ
2. Sineθ / Cos²θSineθ
3. Cosθ / Sineθ
4. Cos²θ + Sin²θ – Sin²θ
Explanation:
1. SecθCotθ
Recall
Sec θ = 1/Cos θ
Cot θ = 1/Tan θ
But Tan θ = Sine θ / Cos θ
Thus,
Cot θ = 1 ÷ Sine θ / Cos θ
Cot θ = 1 × Cos θ / Sine θ
Cot θ = Cos θ / Sine θ
Therefore,
SecθCotθ = 1/Cos θ × Cos θ / Sine θ
SecθCotθ = Cosθ / SineθCosθ
2. SecθTanθCscθ
Recall
Sec θ = 1/Cos θ
Tan θ = Sine θ / Cos θ
Csc θ = 1/Sine θ
Thus,
SecθTanθCscθ =
1/Cosθ × Sineθ/Cosθ × 1/Sineθ
= Sineθ / Cos²θSineθ
3. Cscθ/Secθ
Recall
Csc θ = 1/Sine θ
Sec θ = 1/Cos θ
Thus,
Cscθ/Secθ = 1/Sine θ ÷ 1/Cos θ
= 1/Sine θ × Cos θ
= Cosθ / Sineθ
4. Cosθ / Secθ
Recall
Sec θ = 1/Cos θ
Cosθ / Secθ = Cosθ ÷ 1/Cosθ
= Cosθ × Cosθ
= Cos²θ
Recall
Cos²θ + Sin²θ = 1
Cos²θ = 1 – Sin²θ
But
1 = Cos²θ + Sin²θ
Thus,
Cos²θ = Cos²θ + Sin²θ – Sin²θ
Therefore,
Cosθ / Secθ = Cos²θ + Sin²θ – Sin²θ