Answer:
Hypotenuse: 41 meters, Long leg: 40 meters, Short leg: 9 meters.
Explanation:
According to the statement, we have the following information about the lengths of the right triangle:
Hypotenuse
![3\cdot x + 14](https://img.qammunity.org/2022/formulas/mathematics/college/ocg0zk4asavhfzpn11fdolilzyzaneter0.png)
Long leg
![3\cdot x + 13](https://img.qammunity.org/2022/formulas/mathematics/college/bkrkec6zgziiut43azsmyxgnh58bpm60pg.png)
Short leg
![x](https://img.qammunity.org/2022/formulas/mathematics/high-school/a9sw50msm0inoav7spou76spw8zhpe27w2.png)
By the Pythagoric Theorem, we have the following expression:
(1)
![9\cdot x^(2)+84\cdot x + 196 = x^(2) + 9\cdot x^(2) + 78\cdot x + 169](https://img.qammunity.org/2022/formulas/mathematics/college/rb1cj4umct5sdfilfaouhe2au43z3zydfs.png)
![9\cdot x^(2) + 84\cdot x + 196 = 10\cdot x^(2) + 78\cdot x +169](https://img.qammunity.org/2022/formulas/mathematics/college/cux0cuzgofyacmmqeo977pd57n4y3xzcn0.png)
![x^(2) -6\cdot x -27 = 0](https://img.qammunity.org/2022/formulas/mathematics/college/xtu8ak7ov7pgn2404x62vg9s7qlk0inq9b.png)
![(x-9)\cdot (x+3) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/xpalqomwn33gpisp1zvwb4oexq5nxk5soa.png)
As length is a positive variable by nature, then the only possible solution is
. Lastly, the side lengths of the right triangle are:
Hypotenuse: 41 meters, Long leg: 40 meters, Short leg: 9 meters.