40.8k views
1 vote
F(x) = x^2– 2x + 3; f(x) = –2x + 12

User Ekeren
by
8.4k points

2 Answers

4 votes

Answer:

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyStep-by-step explanation:yyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

User Venita
by
9.3k points
0 votes

Final Answer:

The values of x that satisfy the system f(x) = x^2 - 2x + 3 = -2x + 12 are x = 3 and x = -3.

Step-by-step explanation:

Step 1: Set the functions equal:

f(x) = x^2 - 2x + 3

f(x) = -2x + 12

Setting them equal:

x^2 - 2x + 3 = -2x + 12

Step 2: Combine like terms:

Move all x terms to one side:

x^2 - 2x + 2x = 12 - 3

Simplify:

x^2 = 9

Step 3: Solve the quadratic equation:

Take the square root of both sides (remembering to consider both positive and negative square roots):

√(x^2) = ±√9

x = ±3

Therefore, the values of x that make the two functions equal are x = 3 and x = -3.

"

Complete Question

Consider the functions f(x) = x^2 - 2x + 3 and f(x) = -2x + 12.

Solve the quadratic equation to find the values of x that satisfy the given system.

"

User Cuper Hector
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories