32.0k views
5 votes
If cos A = 1/2, then what is the positive value of cos 1/2 A, in simplest radical form with a rational denominator?

User Itmuckel
by
6.4k points

1 Answer

5 votes

Answer:


\cos((1)/(2)A) = {(√(3))/(2)

Explanation:

Given


\cos A = (1)/(2)

Required

Determine
\cos((1)/(2)A)

To do this, we make use of the following identity


\cos((1)/(2)A) = \sqrt{(\cos A+1)/(2)}

Substitute:
\cos A = (1)/(2)


\cos((1)/(2)A) = \sqrt{((1)/(2)+1)/(2)}

Solve the numerator


\cos((1)/(2)A) = \sqrt{((2+1)/(2))/(2)}


\cos((1)/(2)A) = \sqrt{((3)/(2))/(2)}

Rewrite as:


\cos((1)/(2)A) = \sqrt{(3)/(2) * (1)/(2)}


\cos((1)/(2)A) = \sqrt{(3)/(4)}

Take square roots


\cos((1)/(2)A) = {(√(3))/(2)

User Dujon
by
6.0k points