Answer:
21.6in^3
Explanation:
\text{Volume of Pyramid:}
Volume of Pyramid:
V=\frac{1}{3}Bh
V=
3
1
Bh
Where B is the area of the base
\text{Perimeter of base}:
Perimeter of base:
\,\,10.4
10.4
\text{Side length of base}:
Side length of base:
\,\,\frac{10.4}{4}=2.6
4
10.4
=2.6
Divide perimeter of square by 4 to get side length
\text{Area of base}:
Area of base:
\,\,2.6^2=6.76
2.6
2
=6.76
Area of a square is s^2
B=
B=
\,\,6.76
6.76
h=
h=
\,\,9.6
9.6
given
V=
V=
\,\,\frac{1}{3}Bh
3
1
Bh
V=
V=
\,\,\frac{1}{3}(6.76)(9.6)
3
1
(6.76)(9.6)
Plug in
V=
V=
\,\,21.632
21.632
V\approx
V≈
\,\,21.6\text{ in}^3
21.6 in
3