Answer:
![f(x) = 3x^2+8](https://img.qammunity.org/2022/formulas/mathematics/college/1hv0a9x9f0ing0p8arsmkspnd51837nini.png)
Explanation:
We are given the first derivative of
and the value of
.
To go from the first derivative to the original function, we integrate.
Therefore:
![f(x) = \int {6x} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/2z90c4kiioyrg5eyipjufkefqj8lsv5hnd.png)
To integrate, we add 1 to the power and divide by the new power:
![\int {6x} \, dx = (6x^2)/(2) =3x^2+C](https://img.qammunity.org/2022/formulas/mathematics/college/a3tmjzi3qd8xlxqsjnl53e6lxgmrhv7foy.png)
Because we have an indefinite integral, we have to add the constant,
, to the end.
So:
![f(x) = 3x^2+C](https://img.qammunity.org/2022/formulas/mathematics/college/rf0wcisg19cwijldk4hsu2gf8wq36ydc9z.png)
We know
so we can find the constant
.
![f(0)=3(0)^2+C=8](https://img.qammunity.org/2022/formulas/mathematics/college/i5o48peo5n01wyd9b7ts3xc0a4tjjce2kh.png)
![C=8](https://img.qammunity.org/2022/formulas/mathematics/college/djp71korqot9cl4slrp7xpx82per7257tf.png)
Therefore
![f(x) = 3x^2+8](https://img.qammunity.org/2022/formulas/mathematics/college/1hv0a9x9f0ing0p8arsmkspnd51837nini.png)