223k views
21 votes
Solve the inequality |x+6-|3x+6||+|x+2|-x-4 less then or equal to 0

1 Answer

8 votes

It looks like the inequality is


\bigg|x + 6 - |3x + 6|\bigg| + |x + 2| - x - 4 \le 0

or equivalently,


\bigg|x + 6 - 3 |x + 2|\bigg| + |x + 2| - x - 4 \le 0

Recall the definition of absolute value:


|x| = \begin{cases} x &amp; \text{if } x \ge 0 \\ -x &amp; \text{if } x < 0 \end{cases}

By this definition, we have


|x + 2| = \begin{cases} x + 2 &amp; \text{if } x + 2 \ge 0 \\ -(x + 2) &amp; \text{if } x + 2 < 0 \end{cases} = \begin{cases} x + 2 &amp; \text{if } x \ge -2 \\ -x - 2 &amp; \text{if } x < -2 \end{cases}

Suppose
x < -2. Then


\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = |x + 6 - 3 (-x - 2)| + (-x - 2) - x - 4 \\\\ = |4x + 12| - 2x - 6

By definition of absolute value,


|4x + 12| = 4 |x + 3| = \begin{cases} 4x + 12 &amp; \text{if } x \ge -3 \\ -4x - 12 &amp; \text{if } x < -3 \end{cases}

so we further suppose that
x < -3. Then


\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = |4x + 12| - 2x - 6 \\\\ = (-4x - 12) - 2x - 6 \\\\ = -6x - 18 \le 0 \\\\ \implies x \ge -3

but this is a contradiction, so this case gives no solution.

If instead we have
-3 \le x < -2, then


\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = |4x + 12| - 2x - 6 \\\\ = (4x + 12) - 2x - 6 \\\\ = 2x + 6 \le 0 \\\\ \implies x \le -3

and
-3 \le x and
x \le -3 means that
\boxed{x = -3}.

Now suppose
x \ge -2. Then


\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = |x + 6 - 3 (x + 2)| + (x + 2) - x - 4 \\\\ = |-2x| - 2 \\\\ = 2 |x| - 2

If we further suppose that
-2 \le x < 0, then


\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = 2 |x| - 2 \\\\ = -2x - 2 \le 0 \\\\ \implies x \ge -1

Otherwise, if
x \ge 0, then


\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = 2 |x| - 2 \\\\ = 2x - 2 \le 0 \\\\ \implies x \le 1

Taken together, this case gives the solution
\boxed{-1 \le x \le 1}

So, the overall solution to the inequality is the set


\boxed{\left\{ x \in \mathbb R : x = -3 \text{ or } -1 \le x \le -1 \right\}}

User Featuredpeow
by
6.9k points