28.0k views
2 votes
1 - 4 + 16-64..., n=9​

1 Answer

2 votes

Answer:

n=1/6

Add the numbers

1

4

+

1

6

6

4

=

9

{\color{#c92786}{1}}{\color{#c92786}{-4}}+{\color{#c92786}{16}}-64n=9

1−4+16−64n=9

1

3

6

4

=

9

{\color{#c92786}{13}}-64n=9

13−64n=9

2

Rearrange terms

1

3

6

4

=

9

{\color{#c92786}{13-64n}}=9

13−64n=9

6

4

+

1

3

=

9

{\color{#c92786}{-64n+13}}=9

−64n+13=9

3

Subtract

1

3

13

13

from both sides of the equation

6

4

+

1

3

=

9

-64n+13=9

−64n+13=9

6

4

+

1

3

1

3

=

9

1

3

-64n+13{\color{#c92786}{-13}}=9{\color{#c92786}{-13}}

−64n+13−13=9−13

4

Simplify

Subtract the numbers

Subtract the numbers

6

4

=

4

-64n=-4

−64n=−4

5

Divide both sides of the equation by the same term

6

4

=

4

-64n=-4

−64n=−4

6

4

6

4

=

4

6

4

\frac{-64n}{{\color{#c92786}{-64}}}=\frac{-4}{{\color{#c92786}{-64}}}

−64−64n​=−64−4​

6

Simplify

Cancel terms that are in both the numerator and denominator

Divide the numbers

=

1

1

6