Answer:
The right equation will be "
".
Explanation:
According to the question,
Border around the photograph on the top is:
= 3 cm
The remaining sides,
= 4 cm
Area,
= 10 square cm
Let the length of sides be "x".
Since,
The paper's dimensions will be:
⇒
![(x+3+4)](https://img.qammunity.org/2022/formulas/mathematics/college/v0eopxle0potqs5x13kbrx3sreywfdi3x2.png)
![(x+7)](https://img.qammunity.org/2022/formulas/mathematics/college/pir4ltc10eclqbjln4cwuvt3rm8i2addvh.png)
and
⇒
![(x+4+4)](https://img.qammunity.org/2022/formulas/mathematics/college/abpptxn8dpp8xea8pn3vwozk6zucnuw83j.png)
![(x+8)](https://img.qammunity.org/2022/formulas/mathematics/college/f5q67euj3b05iekxowequz2t5pwnf48ynq.png)
now,
⇒
![(x+7)(x+8)=110](https://img.qammunity.org/2022/formulas/mathematics/college/dfboqcodax2c2vypxpjekvxyzfnib1kv7h.png)
⇒
![x^2+7x+8x+56=110](https://img.qammunity.org/2022/formulas/mathematics/college/l1y3bahh3lqripc2frcq6uhccpigoiu2lr.png)
⇒
![x^2+15+56=110](https://img.qammunity.org/2022/formulas/mathematics/college/dgf61zejp0awnavf1rg9n5usa0t80v1stz.png)
On subtracting "56" from both sides, we get
⇒
⇒
![x^2+15x=54](https://img.qammunity.org/2022/formulas/mathematics/college/758txut83jfz4obskllnzb0hsh9otarzoq.png)
Or,
⇒
![x^2+15x-54=0](https://img.qammunity.org/2022/formulas/mathematics/college/5hig3l9nqig4eec0f58wwfowr3twwy77gh.png)