Answer:
x1=
104
329+
329
2
−10816
x2=\frac{329-\sqrt{329^{2} -10816} }{104}x2=
104
329−
329
2
−10816
The sum of a number and its inverse is 3 29/52. Find the number?
x+1/x=329/52
x+1/x-329/52=0
solve the fraction
(\frac{(52x^{2} +52-329x)}{52x} =0
52x
(52x
2
+52−329x)
=0
52x^{2} +52-329x=052x
2
+52−329x=0
52x^{2} -329x+52=052x
2
−329x+52=0
using the quadratic formular
(-b+-√b^2-4ac) / 2a(−b+−√b
2
−4ac)/2a
x=\frac{329+-\sqrt{(329)^{2} -4*52*52} }{2*52}x=
2∗52
329+−
(329)
2
−4∗52∗52
x1=\frac{329+\sqrt{329^{2}-10816 } }{104}x1=
104
329+
329
2
−10816
x2=\frac{329-\sqrt{329^{2} -10816} }{104}x2=
104
329−
329
2
−10816