114k views
4 votes
MZS = 23

, arc RS = 86

, and RU is tangent to the circle at R. Find mZU.

S

U

User August
by
3.4k points

1 Answer

2 votes

Answer:


\angle U = 20^\circ

Explanation:

Given

See attachment


\angle S = 23

arc
RS = 86

Required

Find
\angle U

Let


O \to center of the circle

We have that:

arc
RS = 86

This implies that:


\angle SOR = 86^\circ

and


\triangle SOR \to is an isosceles triangle

because:


SO = OR \to the radius of the circle

And


\angle RSO = \angle ORS

So, we have:


\angle RSO + \angle ORS + \angle SOR = 180^\circ --- angles in a triangle


\angle RSO + \angle ORS + 86^\circ = 180^\circ

Collect like terms


\angle RSO + \angle ORS =- 86^\circ + 180^\circ


\angle RSO + \angle ORS =94^\circ

Recall that:
\angle RSO = \angle ORS

So:


\angle RSO + \angle RSO =94^\circ


2\angle RSO =94^\circ

Divide by 2


\angle RSO =47^\circ

RU is a tangent.

So:


\angle ORU = 90^\circ

Given that:


\angle S = 23

Considering
\triangle SRU

We have:


\angle RSU = \angle S = 23^\circ

So:


\angle SRU= \angle RSO + \angle ORU


\angle SRU= 47 + 90


\angle SRU= 137

Lastly:


\angle RUS + \angle RSU + \angle SRU =180^(0)


\angle RUS + 23 + 137=180^(0)

Collect like terms


\angle RUS =180^(0) - 23 - 137


\angle RUS =20^(0)

Hence:


\angle U = 20^\circ

MZS = 23 , arc RS = 86 , and RU is tangent to the circle at R. Find mZU. S U-example-1
User Numan
by
4.1k points