Answer:
![k(h(x)) = √(x^2 - 3x - 2)](https://img.qammunity.org/2022/formulas/mathematics/college/d8kkg8x2vqgg0ficytvvz2yd5eaat1bois.png)
![x = (\infty, -0.56]\ u\ [3.56, \infty)](https://img.qammunity.org/2022/formulas/mathematics/college/huer1t0dy9svhruid7b73ipx42m8mbiyvp.png)
Explanation:
Given
![h(x) = x^2 - 3x](https://img.qammunity.org/2022/formulas/mathematics/college/lyk1xvaxmrsl4npwmvialvv5gwjvv4uox1.png)
![k(x) = √(x - 2)](https://img.qammunity.org/2022/formulas/mathematics/college/78bfxnjxq01pi3huaatb0xi5id883u7lpd.png)
Solving (a): k(h(x))
![k(x) = √(x - 2)](https://img.qammunity.org/2022/formulas/mathematics/college/78bfxnjxq01pi3huaatb0xi5id883u7lpd.png)
Replace x with h(x)
![k(h(x)) = √(h(x) - 2)](https://img.qammunity.org/2022/formulas/mathematics/college/uvnwhsrrnriqtmm1tk9u0m69bwwgw19r6y.png)
Substitute:
![h(x) = x^2 - 3x](https://img.qammunity.org/2022/formulas/mathematics/college/lyk1xvaxmrsl4npwmvialvv5gwjvv4uox1.png)
![k(h(x)) = √(x^2 - 3x - 2)](https://img.qammunity.org/2022/formulas/mathematics/college/d8kkg8x2vqgg0ficytvvz2yd5eaat1bois.png)
Solving (b): The domain
For the function to be defined, the expression in the root must be greater than or equal to 0; i.e.
![x^2 - 3x - 2 \ge 0](https://img.qammunity.org/2022/formulas/mathematics/college/aaxczfxs6mb6qv93z36h2lcn5wbumbtsni.png)
Solve for x;
Using a calculator, we have:
and
--- approximated
So, the domain is:
![x = (\infty, -0.56]\ u\ [3.56, \infty)](https://img.qammunity.org/2022/formulas/mathematics/college/huer1t0dy9svhruid7b73ipx42m8mbiyvp.png)