Given:
The complex number is:
![z=1+i√(3)](https://img.qammunity.org/2022/formulas/mathematics/college/bjo6vbe5wdl2kegsyhgn93teafbn0bxf2i.png)
To find:
The argument of the given complex number.
Solution:
If a complex number is
, then the argument of the complex number is:
![\theta=\tan^(-1)(y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/mxwnqzmwsh65joasxthf54jamqvbggb7al.png)
We have,
![z=1+i√(3)](https://img.qammunity.org/2022/formulas/mathematics/college/bjo6vbe5wdl2kegsyhgn93teafbn0bxf2i.png)
Here,
and
. So, the argument of the given complex number is:
![\theta =\tan^(-1)(√(3))/(1)](https://img.qammunity.org/2022/formulas/mathematics/college/3awsgwadz1j2d7402tlemnijgip174f77d.png)
![\theta =\tan^(-1)√(3)](https://img.qammunity.org/2022/formulas/mathematics/college/e5b4zbbmzzlt5ke5i3rlpiai2f2izk9knj.png)
![\theta =\tan^(-1)\left(\tan (\pi)/(3)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/vmy62tpcg6y9bo6nm853jpsvhq5dr8t1hw.png)
![\theta =(\pi)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/rpj7523iq7spygx6gnx0fcs5yywv7mtbrk.png)
Therefore, the argument of the given complex number is
.