Answer:
1.1 : C - x^2 + x - 2
1.2 : A - 4a^2 - 6b^2 + 12
Explanation:
When we have the expression p(x) - q(x), we can substitute those functions in:
(x^2 + 2x - 5) - (x - 3)
We can distribute:
x^2 + 2x - 5 - x + 3
and then combine like terms(2x & -x, -5 & 3)
x^2 + x - 2
This is the same as C.
We can start by distributing:
a^2 - 2b^2 + 3 - 4b^2 + 5 + 3a^2 + 4
Now, we can combine all the a^2 terms(a^2 & 3a^2):
4a^2 - 2b^2 + 3 - 4b^2 + 5 + 4
Then, we can combine the b^2 terms(-2b^2 & -4b^2):
4a^2 - 6b^2 + 3 + 4 + 5
and lastly, all the constants:
4a^2 - 6b^2 + 12
This aligns with option A