9514 1404 393
Answer:
5) 729, an=3^n, a[1]=3; a[n]=3·a[n-1]
6) 1792, an=7(4^(n-1)), a[1]=7; a[n]=4·a[n-1]
Explanation:
The next term of a geometric sequence is the last term multiplied by the common ratio. (This is the basis of the recursive formula.)
The Explicit Rule is ...
for first term a₁ and common ratio r.
The Recursive Rule is ...
a[1] = a₁
a[n] = r·a[n-1]
__
5. First term is a₁ = 3; common ratio is r = 9/3 = 3.
Next term: 243×3 = 729
Explicit rule: an = 3·3^(n-1) = 3^n
Recursive rule: a[1] = 3; a[n] = 3·a[n-1]
__
6. First term is a₁ = 7; common ratio is r = 28/7 = 4.
Next term: 448×4 = 1792
Explicit rule: an = 7·4^(n-1)
Recursive rule: a[1] = 7; a[n] = 4·a[n-1]