6.6k views
1 vote
Three point charges are positioned on the x axis. If the charges and corresponding positions are +32 µC at x = 0, +20 µC at x = 40 cm, and –60 µC at x = 60 cm, what is the magnitude of the electrostatic force on the +32-µC charge?

User Marquez
by
4.6k points

1 Answer

4 votes

Answer:

The magnitude of the electrostatic force on
\mathrm{+32\,\mu C} is:
\mathbf{12\;N}

Step-by-step explanation:

Consider


  • q_1=+32\;\mu\text{C} is at position
    x_1=0\;\text{m}

  • q_2=+20\;\mu\text{C} is at position
    x_2=40\;\text{cm}

  • q_3=-60\;\mu\text{C} is at position
    x_3=60\;\text{cm}

The sum of all horizontal forces on
q_1 is given as


\sum F_x=F_(12)+F_(13)

where


  • F_(12) is the force exerted by
    q_2

  • F_(13) is the force exerted by
    q_3

The force on
q_1 exerted by
q_2 is repulsive, so the direction of the force
F_(12) is to the left (negative direction). Thus


F_(12)=-(K\,|q_1|\,|q_2|)/(r_(12)^2)\\F_(12)=-(K\,|q_1|\,|q_2|)/((x_2\;-\;x_1)^2)\\F_(12)=\mathrm+20\;\mu C\\F_(12)=\mathrm{-((8.988*10^9\;(Nm^2)/(C^2))\,(32\;\mu C)\,(20\;\mu C))/((40\;cm)^2)}\\F_(12)=\mathrm{-((8.988*10^9\;(Nm^2)/(C^2))\,(32*10^(-6)\;C)\,(20*10^(-6)\;C))/((0.40\;m)^2)}\\F_(12)=\mathrm{-36\;N}

The force on
q_1 exerted by
q_3 is attractive, so the direction of the force
F_(13) is to the right (positive direction). Thus


F_(13)=+(K\,|q_1|\,|q_3|)/(r_(13)^2)\\F_(13)=+(K\,|q_1|\,|q_3|)/((x_3\;-\;x_1)^2)\\F_(13)=\mathrm-60\;\mu C\\F_(13)=\mathrm{+((9*10^9\;(Nm^2)/(C^2))\,(32\;\mu C)\,(60\;\mu C))/((60\;cm)^2)}\\F_(13)=\mathrm{+((9*10^9\;(Nm^2)/(C^2))\,(32*10^(-6)\;C)\,(60*10^(-6)\;C))/((0.60\;m)^2)}\\F_(13)=\mathrm{+48\;N}

Therefore


\sum F_x=\mathrm{-36\;N+48\;N} \;\;\;\;\;\Rightarrow\;\;\;\;\; \mathbf{\sum F_x=+12\;N}

the electrostatic force on
q_1 is to the right and has a magnitude of
\mathbf{12\;N}

Three point charges are positioned on the x axis. If the charges and corresponding-example-1
User Phiggy
by
4.3k points