Answer:
![c)\ 45^\circ](https://img.qammunity.org/2022/formulas/mathematics/college/jjr8c5qsuq170rwlh6cwonsuh72uy2mx5n.png)
Explanation:
Given
A semicircle divided into 8 parts
Required
Angle that can be measured with the piece
First, we calculate the minimum angle that can be calculated.
![\theta =(Semi\ circle)/(8)](https://img.qammunity.org/2022/formulas/mathematics/college/s80u0yb6w7pnccj3dc97xeuatykf11c66i.png)
![Semicircle = 180^\circ](https://img.qammunity.org/2022/formulas/mathematics/college/icwhya10r2c7dt7snoljl8poin41fnq7ap.png)
So, we have:
![\theta =(180^\circ)/(8)](https://img.qammunity.org/2022/formulas/mathematics/college/3xkze2f86owadc3f9s3u4fkyu6hw8r0xs7.png)
![\theta =22.5^\circ](https://img.qammunity.org/2022/formulas/mathematics/college/fqd5rtz9uk5jbnqvvrmkkx7fcswdqybe4n.png)
This implies that all angles that can be measured using the piece must be a multiple of 22.5 not greater than 180 degrees (i.e. not greater than the semicircle)
So, we have:
![\theta =22.5^\circ,\ 45^\circ,\ 67.5^\circ,\ 90^\circ,\ 112.5^\circ,\ 135^\circ,\ 157.5^\circ,\ 180^\circ](https://img.qammunity.org/2022/formulas/mathematics/college/b8vxyzrvfiofdu163ihkyntevlmigyehxw.png)
From the list of options, only 45 degrees appear in the possible values of
![\theta](https://img.qammunity.org/2022/formulas/physics/college/ylh46ocqfkrwe9h3xuaw98fxuwrobnrdq7.png)
Hence:
![\theta = 45^\circ](https://img.qammunity.org/2022/formulas/spanish/high-school/nadooyqnbu0rmdjbkx9ji06rv20lmolp10.png)