151k views
2 votes
Help help help miiiiiiiiiiiio plzzzzzzzz​

Help help help miiiiiiiiiiiio plzzzzzzzz​-example-1
User Dspjm
by
8.1k points

1 Answer

6 votes

Answer:


\begin{bmatrix}-1 & 2 \\ (3)/(2) & -(5)/(2) \end{bmatrix}

Explanation:

Inverse of a matrix is given by,


\begin{bmatrix}a & b\\ c & d\end{bmatrix}=(1)/(ad-bc)\begin{bmatrix}d & -b\\ -c & a\end{bmatrix}

By using this property,


\begin{bmatrix}5 & 4\\ 3 & 2\end{bmatrix}^(-1)=(1)/((5* 2-4* 3))\begin{bmatrix}2 & -4\\ -3 & 5\end{bmatrix}


=-(1)/(2)\begin{bmatrix}2 & -4\\ -3 & 5\end{bmatrix}


=\begin{bmatrix}-1 & 2 \\ (3)/(2) & -(5)/(2) \end{bmatrix}

Therefore, inverse of the given matrix will be
\begin{bmatrix}-1 & 2 \\ (3)/(2) & -(5)/(2) \end{bmatrix}

User Daniel Chambers
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories