151k views
2 votes
Help help help miiiiiiiiiiiio plzzzzzzzz​

Help help help miiiiiiiiiiiio plzzzzzzzz​-example-1
User Dspjm
by
4.0k points

1 Answer

6 votes

Answer:


\begin{bmatrix}-1 & 2 \\ (3)/(2) & -(5)/(2) \end{bmatrix}

Explanation:

Inverse of a matrix is given by,


\begin{bmatrix}a & b\\ c & d\end{bmatrix}=(1)/(ad-bc)\begin{bmatrix}d & -b\\ -c & a\end{bmatrix}

By using this property,


\begin{bmatrix}5 & 4\\ 3 & 2\end{bmatrix}^(-1)=(1)/((5* 2-4* 3))\begin{bmatrix}2 & -4\\ -3 & 5\end{bmatrix}


=-(1)/(2)\begin{bmatrix}2 & -4\\ -3 & 5\end{bmatrix}


=\begin{bmatrix}-1 & 2 \\ (3)/(2) & -(5)/(2) \end{bmatrix}

Therefore, inverse of the given matrix will be
\begin{bmatrix}-1 & 2 \\ (3)/(2) & -(5)/(2) \end{bmatrix}

User Daniel Chambers
by
5.0k points