Answer:
They are not inverse functions
Explanation:
Given
![f(x) = 5x](https://img.qammunity.org/2022/formulas/mathematics/college/swfbx49cxvx4oee875g9eja4nnec4hhhh6.png)
![f^(-1)(x) = x](https://img.qammunity.org/2022/formulas/mathematics/college/mko8y8m4equjdxl1t2v9b9zcivem14cefm.png)
Required
Determine if both are inverse functions
First calculate the inverse of f(x)
![f(x) = 5x](https://img.qammunity.org/2022/formulas/mathematics/college/swfbx49cxvx4oee875g9eja4nnec4hhhh6.png)
Replace f(x) with y
![y = 5x](https://img.qammunity.org/2022/formulas/mathematics/college/jnecdjj6owesr28jt79u5sk6xev63dva3p.png)
Swap x and y
![x = 5y](https://img.qammunity.org/2022/formulas/mathematics/college/gxji5dm46r4lue4kncmwvwe9tyybv2eu9v.png)
Make y the subject
![y = (1)/(5)x](https://img.qammunity.org/2022/formulas/mathematics/college/3tzk7fuvc1lgt3ieuao4ygui1huudfax2p.png)
Replace y with f-1(x)
![f^(-1)(x) = (1)/(5)x](https://img.qammunity.org/2022/formulas/mathematics/college/bjwfxbvp6dp2540xl9x2pbe64oo4aqop6c.png)
By comparison:
and
are not the same:
Hence:
and
are not inverse functions