Answer:
81.9%
Explanation:
In a data set with a normal distribution the mean is 59 and standard deviation is three about what percent of the data live between 53 and 62
Using z score formula
z = (x-μ)/σ, where
x is the raw score,
μ is the population mean = 59
and σ is the population standard deviation = 3
For x = 53
z = 53 - 59/3
= -2
P-value from Z-Table:
P(x = 53) = 0.02275
For x = 62
z = 62 - 59/3
= 1
P-value from Z-Table:
P(x = 62) = 0.84134
Hence, the probability of the data live between 53 and 62 is
0.84134 - 0.02275
0.81859
Converting to Percentage.= 0.81859
× 100 = 81.859%
Approximately = 81.9%