Answer:
![\displaystyle (d)/(dx)[\sin(9x)] = 9 \cos(9x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/z17evefgz61r4ow8cu9m1d90upb9x1f4s3.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rwpyhrof52dro5d128gleq5obchnuu5qkj.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Trigonometric Differentiation [Derivative Rule - Chain Rule]:

- Rewrite [Derivative Property - Multiplied Constant]:

- Basic Power Rule:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation