Answer:
Step-by-step explanation:
From the given information:
The BOD of the wastewater can be determined by using the formula:
![BOD _5 = (DO_i-DO_f)/((V_s)/(V_b))](https://img.qammunity.org/2022/formulas/engineering/college/rwqc5m5iy8lhccwtra1lwgcuyhb0wc9q87.png)
where;
biochemical oxygen demand = ???
initial dissolved oxygen = 9 mg/L
final dissolved oxygen = 4 mg/L
sample of the bottle, which is normally 300 mL
= sample volume = 30 mL
![BOD _5 = (9-4)/((30)/(300))](https://img.qammunity.org/2022/formulas/engineering/college/h2x35rz7egwy8graj5i8apznwcl3drlsip.png)
![BOD _5 = (5)/((1)/(10))](https://img.qammunity.org/2022/formulas/engineering/college/xft9j1gdgsvegvbiesgz7y69uxvtdz2iye.png)
![BOD _5 = 5*{(10)/(1)}](https://img.qammunity.org/2022/formulas/engineering/college/um69axkoa4yc54nya98awzx089bt16gmsc.png)
![\mathbf{BOD _5 = 50 \ mg/L}](https://img.qammunity.org/2022/formulas/engineering/college/j27jhoad2ihc4ls7uhtl50cv3i2e2thu4f.png)
The ultimate Carbonaceous BOD is estimated from the formula:
![y_t = L_o-L_t \\ \\ y_t = L_o-L_oe^(-kt) \\ \\ y_t = L_o (1-e^(-kt))](https://img.qammunity.org/2022/formulas/engineering/college/k9xhklrkj1hoahn8mq7k73modb0q0h2a2t.png)
Making
the subject, we have:
![L_o = (y_t)/((1-e^(-kt)) \\ \\ L_o = (50)/(1 - e^(-0.25*5))](https://img.qammunity.org/2022/formulas/engineering/college/5hnin8nnocw5ovjyyh39zc4d8cmr0auxa4.png)
= 70 mg/L
c) The BOD left over after five days =
![L_oe^(-kt)](https://img.qammunity.org/2022/formulas/engineering/college/j02e42p2ytfkg5injnxdsy6ta0y1kcia29.png)
=
![70 * e^(-0.25 *5)](https://img.qammunity.org/2022/formulas/engineering/college/aikvmlkfcdai048opj32mftkgvvn59n1sp.png)
= 20 mg/L
d) The reaction constant rate is estimated as follows:
Recall that:
![\mathbf{BOD _5 = 50 \ mg/L}](https://img.qammunity.org/2022/formulas/engineering/college/j27jhoad2ihc4ls7uhtl50cv3i2e2thu4f.png)
Since DO measure 2 mg/L;
After 30 days,
![BOD_(30) = (9-2) * 10 = 70 \ mg/L](https://img.qammunity.org/2022/formulas/engineering/college/87tbgs0hi6mpehx0zyyw9qh7ydkiclpnjy.png)
Therefore, the reaction rate constant is:
![(50 \ mg/L)/(70 \ mg/L) =(1-e^(-k*5))/(1-e^(-k*30)) \\ \\ 50 (1-e^(-k*30)) = 70 (1-e^(-k*5)) \\ \\ K = 0.25 /day](https://img.qammunity.org/2022/formulas/engineering/college/3ivhiivuhvpzwepyv2rvassh35blkuimez.png)