Answer:
Explanation:
simplify upper n lower fraction of LHS:
2^x+22^x+222^x
= 2^x*1 + (2*11)^x + (2*111)^x
= 2^x*1 + 2^x*11^x + 2^x*111^x
= 2^x*(1+11^x+111^x)
3^x+33^x+333^x
= 3^x*1 + (3*11)^x + (3*111)^x
= 3^x*1 + 3^x*11^x + 3^x*111^x
= 3^x*(1+11^x+111^x)
so LHS
= 2^x*(1+11^x+111^x) / (3^x*(1+11^x+111^x))
= 2^x / 3^x
= (2/3)^x
RHS = 9/4
= (3^2/ 2^2)
= (3/2)^2
= (2/3)^(-2)
so x = -2