Answer:
See below
Explanation:
Finding a:
![\displaystyle sin (\theta) = (opposite )/(hypotenuse)](https://img.qammunity.org/2022/formulas/mathematics/college/92nj4nf52b1stkjxhbwrx8c2hjsbu6pan2.png)
Where θ = 45° , opposite = a, hyp = 4√2
![\displaystyle sin (45)=(a)/(4√(2) ) \\\\(1)/(√(2) ) = (a)/(4√(2) ) \\\\1 = (a)/(4) \\\\\boxed{a = 4}](https://img.qammunity.org/2022/formulas/mathematics/college/9dgweqkqjrc4wb1xz3ptoeh5kanhywhcpc.png)
Finding c:
![\displaystyle tan (\theta) = (opposite )/(adjacent)](https://img.qammunity.org/2022/formulas/mathematics/college/aw8l6gq75o6uo3wwbv0g3nys64w4sw0pfr.png)
Where θ = 45°, opposite = 4, adjacent = c
tan 45 = 4 / c
1 = 4 / c
Multiply both sides by c
c = 4
Finding b:
![\displaystyle sin(\theta) = (opposite)/(hypotenuse)](https://img.qammunity.org/2022/formulas/mathematics/college/wrfklx2szvle98llc0smy1107xcjci97fq.png)
Where θ = 30°, opposite = a(4), hypotenuse = b
sin 30 = 4 / b
![\displaystyle (1)/(2) = (4)/(b)](https://img.qammunity.org/2022/formulas/mathematics/college/bjq73zipoeqkyp3afychxathowjelhlhz6.png)
Cross Multiply
1 * b = 4 * 2
b = 8
Finding d:
![\displaystyle tan (\theta) = (opposite )/(adjacent)](https://img.qammunity.org/2022/formulas/mathematics/college/aw8l6gq75o6uo3wwbv0g3nys64w4sw0pfr.png)
Where θ = 30°, opposite = a(4) , adjacent = d
tan 30 = 4 / d
![\displaystyle (1)/(√(3) ) = (4)/(d) \\\\](https://img.qammunity.org/2022/formulas/mathematics/college/57usxgzbv20azpbzsq0jtf7t5pkes45w6n.png)
Cross Multiplying
1 * d = 4√3
![\boxed{d = 4√(3)}](https://img.qammunity.org/2022/formulas/mathematics/college/seqlwfrmghujiy775vj2han4gslnr866pm.png)
![\rule[225]{225}{2}](https://img.qammunity.org/2022/formulas/mathematics/high-school/3icqlwn6du2l5ygbr7z2lp6sjjralcpq09.png)
Hope this helped!
~AH1807