Answer:
tan(θ) is undefined.
Explanation:
Recall that tan(θ) = sin(θ) / cos(θ). We are given that sin(θ) = -1. Hence:
![\displaystyle \tan\theta=(\sin\theta)/(\cos\theta)=-(1)/(\cos\theta)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gpxiuqx05zcaeyslw8z411mx6f0qaz0d8v.png)
Since 1 / cos(θ) = sec(θ):
![\tan\theta=-\sec\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/rt9zw9ajsfp17fvovakqzz1btnkbypj2vj.png)
We can square both sides:
![\tan^2\theta=\sec^2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/5e2nxler82n14pscaxtqyyknwawgvmzvl8.png)
From the Pythagorean Identity:
![\tan^2\theta+1=\sec^2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/f0npwasweutyrxcxv99u0y7lq6sy1ghfxz.png)
Substitute:
![\tan^2\theta+1=\tan^2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/uzkwspy1j2x3xvppr60mr0e25itaoubtjz.png)
So:
![1\\eq0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ae1v9bwnj85noh8findl9vvofr2z5yhvjg.png)
Since we acquire an untrue statement, no solutions exist.
If needed, refer to the unit circle. Recall that sin(θ) only equals -1 when θ = 3π/2 (on the interval [0, 2π)). At 3π/2, cos(θ) = 0. Since tan(θ) = sin(θ) / cos(θ), tan(θ) is undefined whenever sin(θ) = -1 (or 1).