161k views
1 vote
Prove that:

Question 1 :

\sqrt{(1-sin\theta )/(1+sin\theta) } =sec\theta -tan\theta

Question 2 :

\sqrt{(1+cos \theta)/(1-cos\theta) } +\sqrt{(1-cos\theta)/(1+cos \theta) } =2cos \:ec\theta

User Teter
by
4.0k points

2 Answers

3 votes

Explanation:

Question 1:

Consider the left-hand side


\sqrt{ ( 1 - \sin\theta )/(1 + \sin\theta) } = \sqrt{ ( 1 - \sin\theta )/(1 + \sin\theta) * (1 - \sin\theta )/(1 - \sin\theta ) }


= \sqrt{ \frac{ {(1 - \sin\theta )}^(2) }{(1 - { \sin}^(2)\theta) } } = (1 - \sin\theta )/( \cos\theta)


= (1)/( \cos\theta) - ( \sin\theta)/(\cos\theta )


= \sec\theta \: - \tan\theta

Question 2:

The left-hand side can be rewritten as


\sqrt{(1+ \cos \theta)/(1- \cos\theta) * (1+ \cos \theta)/(1+ \cos \theta) } \: +\sqrt{(1- \cos\theta)/(1+ \cos \theta) * (1 - \cos \theta)/(1 - \cos \theta) }


= (1 + \cos\theta)/( \sin\theta) + (1 - \cos\theta)/( \sin\theta)


= (2)/( \sin\theta ) = 2 \csc\theta

User Cwash
by
4.4k points
4 votes

Answer:

Identities used:

  • 1/cosθ = secθ
  • 1/sinθ = cosecθ
  • sinθ/cosθ = tanθ
  • cosθ/sinθ = cotθ
  • sin²θ + cos²θ = 1

Question 1

  • (1 - sinθ)/(1 + sinθ) =
  • (1 - sinθ)(1 - sinθ) / (1 - sinθ)(1 + sinθ) =
  • (1 - sinθ)² / (1 - sin²θ) =
  • (1 - sinθ)² / cos²θ

Square root of it is:

  • (1 - sinθ)/ cosθ =
  • 1/cosθ - sinθ / cosθ =
  • secθ - tanθ

Question 2

The first part without root:

  • (1 + cosθ) / (1 - cosθ) =
  • (1 + cosθ)(1 + cosθ) / (1 - cosθ)(1 + cosθ)
  • (1 + cosθ)² / (1 - cos²θ) =
  • (1 + cosθ)² / sin²θ

Its square root is:

  • (1 + cosθ) / sinθ =
  • 1/sinθ + cosθ/sinθ =
  • cosecθ + cotθ

The second part without root:

  • (1 - cosθ) / (1 + cosθ) =
  • (1 - cosθ)²/ (1 + cosθ)(1 - cosθ) =
  • (1 - cosθ)²/ (1 - cos²θ) =
  • (1 - cosθ)²/sin²θ

Its square root is:

  • (1 - cosθ) / sinθ =
  • 1/sinθ - cosθ / sinθ =
  • cosecθ - cotθ

Sum of the results:

  • cosecθ + cotθ + cosecθ - cotθ =
  • 2cosecθ
User Marsei
by
4.9k points