Answer:
Average rate of change on the interval [0, 4] is the ratio of y-value change to x-value change on the same interval.
Note:
- Used function equations based on your previous questions in order not to repeat same work for c(x), e(x). And its easy to show that h(x) = 0.5ˣ
A. [a(4) - a(0)] / (4 - 0) = (-2(4) + 3 + 2*0 - 3) / 4 = -8/4 = -2
B. [b(4) - b(0)]/4 = (20 - 8)/4 = 12/4 = 3
C. [c(4) - c(0)] / 4 = (4*1/2 - 0*0) / 4 = 2/4 = 1/2
D. [d(4) - d(0)] / 4 = (4² - 0²)/4 = 16/4 = 4
E. [e(4) - e(0)]/4 = [(-2)(4) - (-2)(0)]/4 = -8/4 = -2
F. [f(4) - f(0)]/4 = (-5 - 3)/4 = -8/4 = -2
G. [g(4) - g(0)]/4 = (2*3⁴ - 2*3⁰)/4 = (162 - 2)/4 = 160/4 = 40
H. [h(4) - h(0)]/4 = (0.5⁴ - 0.5⁰)/4 = (1/16 - 1) /4 =( -15/16) / 4 = - 15/64
Required order is:
- A, E, F >> H >> C >> B >> D >> G