Answer:
Tray will overflow with
of paint.
Explanation:
Dimensions the tray is 10 inch by 14 inch by 4 cm
![1\ \text{cm}=(1)/(2.54)\ \text{inch}](https://img.qammunity.org/2022/formulas/mathematics/high-school/xb58nvkmw87z5c0q81ooqu1dfrdijga3r3.png)
![4\ \text{cm}=(4)/(2.54)\ \text{inch}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ornuill6ap063pl6hmtdo4mdf2qov6jo0q.png)
Volume the tray can hold is
![10* 14* (4)/(2.54)\ \text{in}^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/cv61tur92l2kt99vw8ui92uck2aot6y2b8.png)
![1\ \text{inch}^3=(1)/(231)\ \text{gallon}](https://img.qammunity.org/2022/formulas/mathematics/high-school/1yhn6mq0tuqqagazmnaa5fn4jx9xuf1ecx.png)
The volume of paint Billy has is
![1\ \text{gallon}](https://img.qammunity.org/2022/formulas/mathematics/high-school/7rg8vc988jx01hv2ej8hz7rbfuxbo1326a.png)
Difference in the volume of paint and volume of tray in cubic inches is
![\left(1-(10*14*(4)/(2.54))/(231)\right)231=10.53\ \text{inch}^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/3mcob90xeu1o5rq5jzu7f7969ycstsz0zp.png)
The tray will overflow with
of paint.