212k views
11 votes
Futhe Mathematics

(Cos {}^(4)t -Sin {}^(4)t ) / Cos {}^(2)t


1 Answer

14 votes

Answer:

cos2t/cos²t

Explanation:

Here the given trigonometric expression to us is ,


\longrightarrow (cos^4t - sin^4t )/(cos^2t )

We can write the numerator as ,


\longrightarrow ( (cos^2t)^2-(sin^2t)^2)/(cos^2t )

Recall the identity ,


\longrightarrow (a-b)(a+b)=a^2-b^2

Using this we have ,


\longrightarrow ((cos^2t + sin^2t)(cos^2t-sin^2t))/(cos^2t)

Again , as we know that ,


\longrightarrow sin^2\phi + cos^2\phi = 1

Therefore we can rewrite it as ,


\longrightarrow (1(cos^2t - sin^2t))/(cos^2t)

Again using the first identity mentioned above ,


\longrightarrow \underline{\underline{((cost + sint )(cost - sint))/(cos^2t)}}

Or else we can also write it using ,


\longrightarrow cos2\phi = cos^2\phi - sin^2\phi

Therefore ,


\longrightarrow \underline{\underline{(cos2t)/(cos^2t)}}

And we are done !


\rule{200}{4}

Additional info :-

Derivation of cos²x - sin²x = cos2x :-

We can rewrite cos 2x as ,


\longrightarrow cos(x + x )

As we know that ,


\longrightarrow cos(y + z )= cosy.cosz - siny.sinz

So that ,


\longrightarrow cos(x+x) = cos(x).cos(x) - sin(x)sin(x)

On simplifying,


\longrightarrow cos(x+x) = cos^2x - sin^2x

Hence,


\longrightarrow\underline{\underline{cos (2x) = cos^2x - sin^2x }}


\rule{200}{4}

User Nitsua
by
5.0k points