162k views
0 votes
Simplify the left side of equation so it looks like the right side. cos(x) + sin(x) tan(x) = sec (x)

User Herr Kater
by
3.7k points

1 Answer

2 votes

Explanation:

Consider LHS


\cos(x) + \sin(x) \tan(x) = \sec(x)

Apply quotient identies


\cos(x) + \sin(x) * ( \sin(x) )/( \cos(x) ) = \sec(x)

Multiply the fraction and sine.


\cos(x) + \frac{ \sin {}^(2) (x) }{ \cos(x) } = \sec(x)

Make cos x a fraction with cos x as it denominator.


\cos(x) * \cos(x) = \cos {}^(2) (x)

so


\frac{ \cos {}^(2) (x) }{ \cos(x) } + \frac{ \sin {}^(2) (x) }{ \cos(x) } = \sec(x)

Pythagorean Identity tells us sin squared and cos squared equals 1 so


(1)/( \cos(x) ) = \sec(x)

Apply reciprocal identity.


\sec(x) = \sec(x)

User Fibnochi
by
3.1k points