65.0k views
5 votes
What's the right answer?

What's the right answer?-example-1
User Navneet
by
4.9k points

1 Answer

0 votes

Given:


sinh(f(x))=1+x^2

To find:

The value of f'(x).

Solution:

Formulae used:


(d)/(dx)sinh(x)=cosh(x)


(d)/(dx)x^n=nx^(n-1)


(d)/(dx)C=0

Chain rule:


(d)/(dx)[f(g(x))]=f'(g(x))g'(x)

Where C is an arbitrary constant.

We have,


sinh(f(x))=1+x^2

Differentiate with respect to x.


cosh(f(x))f'(x)=0+2x


f'(x)=(2x)/(cosh(f(x)))

Therefore, the required values is
f'(x)=(2x)/(cosh(f(x))).

User SirMoreno
by
4.5k points