21.0k views
3 votes
If the terminal side of angle 0 in standard position intersects the unit circle at p (3/5,4/5). Find cos0 and sin0

1 Answer

6 votes

Answer:


\sin \theta = (4)/(5),
\cos \theta = (3)/(5)

Explanation:

Let be
P(x,y) = \left((3)/(5), (4)/(5) \right) the end of the terminal side of angle
\theta in standard position, that is, an angle measured with respect to +x semiaxis. By Trigonometry, we know that the sine and the cosine of the angle are, respectively:


\sin \theta = \frac{y}{\sqrt{x^(2) + y^(2)}} (1)


\cos \theta = \frac{x}{\sqrt{x^(2)+y^(2)}} (2)

If we know that
x = (3)/(5) and
y = (4)/(5), then the sine and the cosine of the angle are:


\sin \theta = \frac{(4)/(5) }{\sqrt{\left((3)/(5) \right)^(2)+\left((4)/(5) \right)^(2)}}


\sin \theta = (4)/(5)


\cos \theta = \frac{(3)/(5) }{\sqrt{\left((3)/(5) \right)^(2)+\left((4)/(5) \right)^(2)}}


\cos \theta = (3)/(5)

User Sascha Vetter
by
7.8k points